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DRAMATIC INCREASE IN MODEL SIZES

The Trend Continues
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THE SCALING LAWS

Performance of neural networks increases with model/dataset size
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EMPIRICAL EVIDENCE

The Scaling Laws in NLP
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Reducible Loss

EMPIRICAL EVIDENCE

The Scaling Laws for Generative models

Generalization Error (Log-scale)

Images 8x8, loss per image
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EMPIRICAL EVIDENCE

The Scaling Laws in Speech

omsll Deta Power-law Region Irreducible
™ Region Error
o Region
g Best Guess Error
6’ R
o
=)
—
o
—
—
w
c
©
-
©
N
©
—
]
c
o \q—
O Irreducible Error

Training Data Set Size (Log-scale)

)

(a) LSTM (b) Transformer
0.350 - —_—— ] 0.350 -
0.345 - —— ) 0.345 -
» 0.340 - —— 3 » 0.340 -
§ 0.335 - —— 4 S 0.335
20,330 - —— 6 30,330 -
0.325 - 0.325 -
0.320 - 0.320
— T —r—rr — T LI L L L L L L
Compute [petaflop/s-days] 10~ 10~° 1072 107"

Compute [petaflop/s-days]

<A NVIDIA
Droppo, Jasha, and Oguz Elibol. Scaling Laws for Acoustic Models. arXiv preprint arXiv:2106.09488 (2021).



EMPIRICAL EVIDENCE

The Scaling Laws in Computer Vision
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Beyond accuracy




ARE LARGE LANGUAGE MODELS WORTH IT?
The cost of incremental improvement

Are we building those
models only for the
small incremental
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FEW SHOT LEARNING
Learning from far fewer examples

Zero-shot One-shot Few-shot
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Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.. S NVIDIA.



FINETUNED LANGUAGE MODELS ARE ZERO SHOT LEARNERS
Exceptional zero shot learning capability
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GPT-4 and its applications



Unbelievable Rate of Progress
Major shift in capabilities

Model | GPT-4 text-davinci-003 Codex(code-davinci-002) CODEGEN-16B

Accuracy | 82% 65% 39% 30%

Table 1: Zero-shot pass@1 accuracy comparison of different models on HumanEval

<A NVIDIA.



Beyond Incremental Improvement to NLP
Exceptional zero shot learning capability

Exam results (ordered by GPT 3.5 performance) GPT4 W

Estimated percentile lower bound (among 1est 1akers) GPT 4 ("%;‘_?‘gns) -

100% -

60% —

40% -

20% -

Figure 1: To get a sense of how quickly model capabilities are progressing — consider the jump in exam
performance between GPT-3.5 and GPT-4 (OpenAl, 2023b).
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Sparks of Artificial General Intelligence:
Early experiments with GPT-4

Sébastien Bubeck Varun Chandrasekaran Ronen Eldan Johannes Gehrke
Eric Horvitz Ece Kamar Peter Lee Yin Tat Lee Yuanzhi Li Scott Lundberg
Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

Microsoft Research
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GPTs are GPTs: An Early Look at the Labor Market Impact
Potential of Large Language Models

Tyna Eloundou!, Sam Manm'ngl’z, Pamela Mishkin*!, and Daniel Rock>

lOpenAI
2OpenResearch
3University of Pennsylvania

March 27, 2023

Abstract

We investigate the potential implications of large language models (LLMs), such as Generative Pre-
trained Transformers (GPTs), on the U.S. labor market, focusing on the increased capabilities arising from
LLM-powered software compared to LLMs on their own. Using a new rubric, we assess occupations based
on their alignment with LLM capabilities, integrating both human expertise and GPT-4 classifications.
Our findings reveal that around 80% of the U.S. workforce could have at least 10% of their work tasks
affected by the introduction of LLMs, while approximately 19% of workers may see at least 50% of their
tasks impacted. We do not make predictions about the development or adoption timeline of such LLMs.
The projected effects span all wage levels, with higher-income jobs potentially facing greater exposure to
LLM capabilities and LLM-powered software. Significantly, these impacts are not restricted to industries
with higher recent productivity growth. Our analysis suggests that, with access to an LLM, about 15%
of all worker tasks in the US could be completed significantly faster at the same level of quality. When
incorporating software and tooling built on top of LLMSs, this share increases to between 47 and 56%
of all tasks. This finding implies that LLM-powered software will have a substantial effect on scaling
the economic impacts of the underlying models. We conclude that LLLMs such as GPTs exhibit traits of
general-purpose technologies, indicating that they could have considerable economic, social, and policy
implications.

80% of U.S. workforce...

I 10% of their work tasks affected

With access to an LLM...
47% and 56% of all work tasks could
be completed significantly faster
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What does it mean for the
industry?



Obvious applications



Changing Competitive Landscape
55.8% faster than the control group

Capgomini® Google ¢ Apple
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| write 50 lines of code per day
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Microsoft <% NVIDIA.

>

GitHub
Copilot

| write 100-1000 lines of code per day

+ unit tests + comments + documentation

Easy Median Hard Overall
pass@Fk k=1|k=5|k=1|k=5|k=1|k=5|k=1|k=5
GPT-4 68.2 | 86.4 | 40.0 | 60.0 | 10.7 | 14.3 38.0 | 53.0
text-davinci-003 50.0 81.8 16.0 34.0 0.0 3.6 19.0 36.0
Codex (code-davinci-002) | 27.3 | 50.0 | 12.0 | 22.0 3.6 3.6 13.0 | 23.0
Human (LeetCode users) 72.2 37.7 7.0 38.2
Table 2: Zero-shot pass@1 and pass@5 accuracies (%) on LeetCode.
Peng, S., Kalliamvakou, E., Cihon, P., & Demirer, M. (2023). The impact of ai on developer productivity: Evidence from github copilot. arXiv preprint arXiv:2302.06590. SINVIDIA

Sébastien B et all (2023). Sparks of Artificial General Intelligence: Early experiments with GPT-4. arXiv:2303.12712



| understand that you are looking for a general plan for processing seismic data using the
Madagascar package. Here's an outline of the processing steps, along with the

corresponding Madagascar commands:

1. Load the seismic data (e.g., data.su file):
sfsuread < data.su endian=n > data.rsf

2. Display a few shots from the data:
sfwindow < data.rsf n1=2 | sfgrey | sfpen

3. Apply trace header manipulation if needed (e.g., set the correct geometry):

sfput < data.rsf 01=0 d1=102=0 d2=1> data_geom.rsf

Changing Competitive Land

Across countless disciplines

& @

0

4. Remove noise from the data using a denoising algorithm (e.g., median filter):

sfmedian < data_geom.rsf rect1=5 rect2=5 > data_denoised.rsf

5. Apply bandpass filtering to emphasize thi & gemo madagascarpy > ...

sfbp < data_denoised.rsf flo=5 fhi=60 > d
6. Perform velocity analysis to estimate inte
sfveltran < data_filtered.rsf semblance=y
7. Create a smoothed velocity model (using
sfgsmooth < velocity.rsf rect1=20 rect2=2
8. Perform normal moveout (NMO) correctic
sfnmo < data_filtered.rsf vnmo=velocity_s
9. Stack the NMO-corrected data to create ¢
sfstack < data_nmo.rsf > zero_offset.rsf
10. Apply post-stack migration to the zero-of
sfkirchhoffmig2 < zero_offset.rsf vel=velo
11. Visualize the final migrated section:
sfgrey < migrated_section.rsf | ¥~~~
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ttps://www.youtube.com/watch?v=r951ZhHrdp0&ab channel=Datalndependent"""

from
from
from
from

if _npame__ == "_main_ ":

langchain.llms.openai import OpenAI
langchain.agents import load tools
langchain.agents import initialize agent
langchain.agents import AgentType

1lm = OpenAI(temperature=0, max_tokens=1000
tools = load tools(["terminal", "llm-math"], 1lm=11lm)
agent = initialize agent(tools, 1lm, agent=AgentType.ZERO SHOT REACT DESCRIPTION, verbose=True

agent.run("""You have access to the Unix terminal.

You will call command line tools from Madagascar software package
for seismic data processing.

Use "<" to pass input files to the Madagascar funciton.

Create a spike sampled with 0.004 sec interval. It should be 1000 samples lon
centered on 300, entitled "Welcome". Put it into "spike.rsf".

Compute sampling frequency as an inverse of sampling interval.

Use it to compute the Nyquist frequency of the signal and bandpass the spike
Save the output in "spike nyquist.rsf".

Explain how you computed the Nyquist frequency.

Save signal bandpassed below 2 Hz in file "spike bandpassed.rsf".

Use ">" to create the output files.

MADAGASCA

> Finished chain.
® (base) oovcharenko@nvdxb-musk:~/work/aramco/chatbot/langchain/demos$ python d
emo_madagascar.py

> Entering new AgentExecutor chain...
I need to create a spike, compute the sampling frequency, compute the Nyquis
t frequency, and bandpass the spike below it.
Action: Terminal
Action Input: sfspike nl1=1000 d1=0.004 k1=300 labell=Welcome > spike.rsf
Observation:
Thought: I need to compute the sampling frequency
Action: Calculator
Action Input: 1/0.004
Observation: Answer: 250.0

Thought: I need to compute the Nyquist frequency
Action: Calculator

Action Input: 250/2

Observation: Answer: 125.0

Thought: I need to bandpass the spike below the Nyquist frequency

Action: Terminal

Action Input: sfbandpass < spike.rsf fhi=2 > spike_bandpassed.rsf

Observation:

Thought: I now know the final answer

Final Answer: I created a spike sampled with 0.004 sec interval, 1000 samples
long and centered on 300, entitled "Welcome" and saved it in "spike.rsf". I
computed the sampling frequency as an inverse of sampling interval (1/0.004 =
250.0) and used it to compute the Nyquist frequency of the signal (250/2 = 1

25.0). I then bandpassed the spike below the Nyquist frequency (fhi=2) and sa
ved the output in "spike_bandpassed.rsf".

> Finished chain.
® (base) oovcharenko@nvdxb-musk:~/work/aramco/chatbot/langchain/demos$ sfin < s
pike bandpass.rsf
in:
in="/var/tmp/spike bandpass.rsf@"
esize=4 type=float form=native
nl=1000 d1=0.004
1000 elements 4000 bytes

<A NVIDIA.
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Changing Competitive Landscape

Across countless disciplines

VerilogEval: Evaluating Large Language Models for Verilog Code Generation

Natural Language

Problem Description Sandbox Environment

=
EEHE Pass
EEEEE r

Generated Verilog Code

Verilog Simulator

@ L
LLM & - 1T

@ Golden Solution Crafted Testbench Eail
m ]

e B

\III?

The increasing popularity of large language models (LLMs) has paved the way for their application in diverse domains. This paper proposes a benchmarking framework tailored
specifically for evaluating LLM performance in the context of Verilog code generation for hardware design and verification. We present a comprehensive evaluation dataset consisting of
156 problems from the Verilog instructional website HDLBIts. The evaluation set consists of a diverse set of Verilog code generation tasks, ranging from simple combinational circuits to
complex finite state machines. The Verilog code completions can be automatically tested for functional correctness by comparing the transient simulation outputs of the generated
design with a golden solution. We also demonstrate that the Verilog code generation capability of pretrained language models could be improved with supervised fine-tuning by
bootstrapping with LLM generated synthetic problem-code pairs.

<2 NVIDIA



Changing Competitive Landscape

Can you tell me the descriptive statistics of the data and also create some basic charts and
graphs that help me visualize what is in it and any patterns it may contain?

@ Finished working Showwork Vv

Top 10 Operating Airlines by Passenger Count

Passenger Count
= N N

y
=)

Operating Airline

Top 10 GEO Regions by Passenger Count

o
@

Passenger Count
o
o

e
IS

GEO Region

https://dataliteracy.com/code-interpreter-for-chatgpt/

Reducing barrier to programming

Can you modify the top 10 operating airlines bar chart for me? I'd like to see the bars
horizontal, make them gray for me please, and can you add data labels to the end of each
bar, making sure to add thousands separator?

@ Finished working Showwork v

Top 10 Operating Airlines by Passenger Count

United Airlines 350,170,993
United Airlines - Pre 07/01/2013
SkyWest Airlines
American Airlines
Delta Air Lines

Southwest Airlines

Operating Airline

Virgin America
Alaska Airlines
US Airways

JetBlue Airways

15 2.0 25
Passenger Count

Here is the modified bar chart showing the top 10 operating airlines by passenger count:

* The bars are now displayed horizontally.
* The color of the bars has been changed to gray.
* Data labels have been added to the end of each bar with a thousands separator for

improved readability.
Please take a look at the visualization below:
Top 10 Operating Airlines by Passenger Count (Modified)

Feel free to let me know if there are any additional modifications you would like to make, or if

you have any other questions or requests!

<A NVIDIA.



Changing Competitive Landscape

https://github.com/KillianLucas/open-interpreter NVIDIA



Changin

| asked the search engine:

Phind

ANSWER

To create a shape of a tree, we can use the concept of printing patterns in programming. There are multiple ways to
create a pattern of a tree, including using loops, recursion, and conditional statements. Let's explore some of the patterns

we can use to create a tree shape.

One approach to create a tree shape is to print a pyramid pattern with a trunk. We can use the code provided in
programiz.com to print a half pyramid of alphabets. We can modify the code to print a pyramid pattern of asterisks and
add a trunk to the pattern.

Here's how we can modify the code to print a tree shape:

Questions & answers

Q Quor
Question

| am writing a program to
create a binary search tree

and display sorted data.
How canldo thatinC

programming easily give m...

Answer - 10 v

Here is code for in-order
traversal in binary search...
More

Google

Question

Programming Language: C
Programming1. Make a
code of implementation of

the Binary Tree program and
explain each line on how it...

Answer - 0 votes

Step 1 Binary tree in c pro...
More

g the way we search

C)
Question

1) Consider the following
tree that holds Entries of
type Integer, String: 1,Z 2,0
3M4,W5,H.6,P7,VWrite
a code fragment to create...

Answer - 0 votes

Solution: | have written the
code in Python Language,...
More

Chat GPT -OpenAl

write a programming code that takes a letter can creates a shape of a tree

#include <iostream>

#include <string>

using namespace std;

int main(){
string letter;

cout << "Enter a letter: ";

int main() { Feedback )
int i, j, k; cin >> letter;
char input, alphabet = '*';
printf("Enter the height of the tree: "); GeeksforGeeks

https://www.geeksforgeeks.org » create-a-tree-in-level : cout << endl;

scanf( &input); ’
int height = input - '@'; Create a tree in level order
for (i = 1; i <= height; ++i) { Sep 2,2022 — Create a tree in level order ... Given an array of elements, the task is to insert these

; : : : . cout << |etter << |etter << |etter << end|;
for (j = 1; j <= (height - i); ++j) { elements in level order and construct a tree
printf(" "); cout << |letter <<" " << |etter << end|;

} https://www.geeksforgeeks.org » introduction-to-binar.

Introduction to Binary Tree - Data Structure and Algorithm ...

printf("%c", alphabet); Mar 15, 2023 — In compilers, Expression Trees are used which is an application of binary trees

cout << |etter << end|;
cout << |etter << end|;
cout << |letter << end|;
cout << |etter << endl;
cout << |letter << |etter << |etter << end|;

for (k = 1; k <= (2*i - 1); ++k) { Ask a followup question

} Huffman coding trees are used in data compression algorithms
printf("\n");
} Can you explain how the loops in the first approach work?
for (i = 1; i <= (height/3); ++i) {

. o ) _ People also ask
for (j = 1; j <= (height-2); ++j) Can you provide an example of modifying the tree shape using the recursive approach?

printf(" "); How do you make a tree in coding? V.

} How would you add more branches to the tree using these approaches?
printf("%c\n", alphabet);

return O;
How to create a tree in Java code? v }

} 7 Is there a way to make the trunk of the tree dynamic in size in the first approach? .
return @; How to create a tree in C language? v

Are there any other programming concepts that could be used to create a tree shape? How do you create a binary tree in programming? v
F 1ck
In this code, we first take input from the user for the height of the tree. We then use three nested loops to print the = :
rogramiz
pyramid pattern of asterisks. The first loop is for the height of the tree, the second loop is for printing the spaces before P hitps://www.programiz.com > dsa » binary-tree
the asterisks, and the third loop is for printing the asterisks. Bi _:
inary Tree <A NVIDIA

After printing the pyramid pattern, we use two nested loops to print the trunk of the tree. The first loop is for the height
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Beyond the Obvious

We can only see the first wave of business models affected

Image ID: DBOC59
www.alamy.com
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Transforming Impossible into Feasible

Future of books / reports

Hype Cycle for Artificial Intelligence, 2020

Knowledge Graphs
Intelligent Applications  Digital Ethics

Edge Al

Deep Neural Network ASICs
Data Labeling and Annotation Services
Smart Rol

bots .

5 Al Cloud Services

Declslon | Deep Neural Networks (Deep Learning)
Al Developer and Teaching Kits Natural Language Processing (NLP)

Al Governance
Augmented Intelligence Machine Learning
) GPU
Neuromorphic Hardware o -

ble Al
Al Marketplaces

Things as Customers
Responsi

FPGA Accelerators

Expectations

Small Data Chatbots

Artificial General Intelligence

Cognitive Computing
Autonomous Vehicles

Peak of

Innovation Inflated Trough of Slope of Plateau of
Trigger i Disillusi Enlightenment Productivity
Time
Plateau will be reached:
O less than 2 years ® 2to5years @ 51010 years A\ more than 10 years ® obsolete before plateau As of July 2020

gartner.com/SmarterWithGartner

Gartner.
® . Inc.. . All right d. Gartner and Gartner, Inc. and ffil theU.s. ®

h D Lippincott B.H CAMBRIDGE

\ Williams & Wilkins @) UNIVERSITY PRESS
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The Open Access Publisher
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Transforming Impossible into Feasible

Democratizing access to education

Courses v Search Q ® Khan Academy Get Al Guide Donate Login Sign up

For every student,
every classroom.
Real results.

We're a nonprofit with the mission to provide a free, world-class education

for anyone, anywhere.

Bill Gates says Al chatbots like ChatGPT can
replace human teachers

® Al-powered tutors could be a more economical solution for parents who can't afford a
human teacher.

By Vinay Patel W @VinayPatelBlogs n n H ﬂ n n
04/27/23 AT 7:28 AM BST
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Not just language




WHAT IS GENERATIVE Al?
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early describe quantum compu

Quantum computing is a new type of com

mechanics to perform calculations and solv

classical computers. It is based on the abilit

photons, to exist in multiple states at the sg

superposition.

In classical computing, information i

e a value of either 0 or 1. In o
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BIOLOGY

Nucleotide transformer
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CHEMISTRY / DRUG DISCOVERY
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MATERIAL SCIENCE

Already changing related disciplines

DISCOVERY OF 2D MATERIALS USING TRANSFORMER
NETWORK BASED GENERATIVE DESIGN *

Rongzhi Dong Yuqi Song
Department of Computer Science and Engineering Department of Computer Science and Engineering m m

University of South Carolina University of South Carolina

Columbia, SC 29201 Columbia, SC 29201 m

Edirisuriya M. D. Siriwardane Jianjun Hu * m
Department of Physics Department of Computer Science and Engineering M
University of Colombo University of South Carolina m
Colombo 00300, Sri Lanka Columbia, SC 29201

jianjunh@cse.sc.edu (m

ABSTRACT (a) NiCly (b) IrSBr (c) CuBrj (d) CoBrCl
Two-dimensional (2D) materials have wide applications in superconductors, quantum, and topologi- ) ) o )
cal materials. However, their rational design is not well established, and currently less than 6,000 Figure 9: Four new 2D structures discovered by our MTG pipeline with 0 E-above-hull energy.

experimentally synthesized 2D materials have been reported. Recently, deep learning, data-mining,
and density functional theory (DFT)-based high-throughput calculations are widely performed to
discover potential new materials for diverse applications. Here we propose a generative material
design pipeline, namely material transformer generator(MTG), for large-scale discovery of hypo-
thetical 2D materials. We train two 2D materials composition generators using self-learning neural
language models based on Transformers with and without transfer learning. The models are then
used to generate a large number of candidate 2D compositions, which are fed to known 2D materials
templates for crystal structure prediction. Next, we performed DFT computations to study their
thermodynamic stability based on energy-above-hull and formation energy. We report four new
DFT-verified stable 2D materials with zero e-above-hull energies, including NiCl,, IrSBr, CuBr3, and
CoBrCl. Our work thus demonstrates the potential of our MTG generative materials design pipeline
in the discovery of novel 2D materials and other functional materials.

)5824v1 [cond-mat.mtrl-sci] 14 Jan 2023
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BEYOND SPEECH

Foundation for a range of timeseries problems

”Voicebox is a non-autoregressive flow-matching model trained to infill speech, given audio
context and text, trained on over 50K hours of speech that are neither filtered nor enhanced.”

NVIDIA.



BEYOND SPEECH

Taking the learnings to other disciplines

Predicting brain activity using Transformers

Hossein Adeli'*, Sun Minni', Nikolaus Kriegeskorte'
!Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA

* corresponding author: ha2366@columbia. edu

Abstract

The Algonauts challenge [Gillord et al,, 2023] called on the community to provide
novel solutions for predicting brain activity of humans viewing natural scenes.
This report provides an overview and technical details of our submitted solution.
We use a general transformer encoder-decoder model to map * .
responses. The encoder model is a vision transformer trained usi
methods (DINOv2). The decoder uses queries corresponding
regions of interests (ROI) in different hemispheres to gather rel
from the encoder output for predicting neural activity in each cis
tokens from the decoder are then linearly mapped to the fM
predictive success (challenge score: 63.5229, rank 2) suggests IT_
self-supervised transformers may deserve consideration as model
brain representations and shows the effectiveness of transformer
and cross-attention) to learn the mapping from features to brain r
available in this github repository.
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EEGformer: A transformer—based
brain activity classification
method using EEG signal

Zhijiang Wan!23, Manyu Li2, Shichang Liu*, Jiajin Huang?®,

Hai Tan® and Wenfeng Duan'*

‘The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China,
School of Information Engineering, Nanchang University, Nanchang, Jiangxi, China, *Industrial Institute
of Artificial Intelligence, Nanchang University, Nanchang, Jiangxi, China, *School of Computer Science,
Shaanxi Normal University, Xi'an, Shaanxi, China, *Faculty of Information Technology, Beijing University
of Technology, Beijing, China, *School of Computer Science, Nanjing Audit University, Nanjing, Jiangsu
China

Background: The effective analysis methods for steady-state visual evoked
potential (SSVEP) signals are critical in supporting an early diagnosis of glaucoma.
Most efforts focused on adopting existing techniques to the SSVEPs-based brain—
computer interface (BCI) task rather than proposing new ones specifically suited
to the domain.

Method: Given that electroencephalogram (EEG) signals possess temporal,
regional, and synchronous characteristics of brain activity, we proposed a
transformer—based EEG analysis model known as EEGformer to capture the EEG
characteristics in a unified manner. We adopted a one-dimensional convolution
neural network (ILDCNN) to automatically extract EEG-channel-wise features.
The output was fed into the EEGformer, which is sequentially constructed using
three components: regional, synchronous, and temporal transformers. In addition
to using a large benchmark database (BETA) toward SSVEP-BCI application to
validate model performance, we compared the EEGformer to current state-of-
the-art deep learning models using two EEG datasets, which are obtained from
our previous study: SJTU emotion EEG dataset (SEED) and a depressive EEG
database (DepEEG).

Results: The experimental results show that the EEGformer achieves the best
classification performance across the three EEG datasets, indicating that the
rationality of our model architecture and learning EEG characteristics in a unified
manner can improve model classification performance.

Conclusion: EEGformer generalizes well to different EEG datasets, demonstrating
our approach can be potentially suitable for providing accurate brain activity
classification and being used in different application scenarios, such as
SSVEP-based early glaucoma diagnosis, emotion recognition and depression

discrimination

<A NVIDIA.
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THE NUCLEUS

Period of early success lays the
foundation for the future of
generative models.

%R

GENERATIVE MODELS

We understood how to design those for quite some time

20
16

", o

3

DIVERSITY AND

GAN EXPLOSION STABILITY AND FIDELITY REALISM CONTROL
SCALE
Success of Generative Working towards stable training Successs in generation of higher Incremental improvements Models that not only generate
Adversarial Networks pushes the of larger and more capable fidelity content increasing the realism of the high fidelity but also diverse
boundary of what is possible. models. generated content. content that can be controlled by
the user.

5
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EVEN MORE DIVERSITY AND CONTROL

Blurring the line between digitally created art and reality

<A NVIDIA.



EASE OF USE

Critical mass

Ao o e

<ANVIDIA.



ANY FORM OF DESIGN

From Interior decoration to... Architecture

Furniture and interior Fashion Architecture
decoration \ '

SN T

/—’ ﬂ—l

New York Times: A.l.-Generated Art Is Already Transforming Creative Work
https://www.nytimes.com/2022/10/21/technology/ai-generated-art-jobs-dall-e-2.html <ZNVIDIA
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ANY FORM OF DESIGN

...to Automotive and more

Automotive Game development

Biology / Chemistry / Material

Science / Scientific Visualization
/ ?77?

Text to image on Stable Diffusion, using the prompt: ‘magical off works dreamscape’ Image-10-image transiation using Stable Diffusion

<A NVIDIA.



ROBOTICS

Planning and Imagination
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StructDiffusion: Language-Guided Creation of Physically-Valid Structures
using Unseen Objects

“Set the table in the center left, relative to you.”
t=0

Robots operating in human environments must be able to rearrange objects into semantically-meaningful configurations, even if these objects are previously unseen. We focus on the
problem of building physically-valid structures without step-by-step instructions.

such as "set the table" and "make a line".

We propose StructDiffusion, which combines a diffusion model and an object-centric transformer to construct structures given partial-view point clouds and high-level language goals, \"

StructDiffusion improves success rate on assembling physically-valid structures out of unseen objects by on average 16% over an existing multi-modal transformer model, while allowin
us to use one multi-task model to produce a wider range of different structures. We show experiments on held-out objects in both simulation and on real-world rearrangement tasks. “Make a tower in the middle and center Of the table”

ProGPrOMPT: Generating Situated Robot Task
Plans using Large Language Models
ICRA 2023
Extended version in Autonomous Robots 2023

Ishika Singh', Valts Blukis2, Arsalan Mousavian?, Ankit Goyal?, Danfei Xu?,

Jonathan Tremblayz, Dieter Fox2, Jesse Thomason', Animesh Garg2
TUniversity of Southern California, 2NVIDIA

Start » Done

‘ . . : Fig. 1: Real-world rearrangement with unseen objects, given a language instruction. We use StructDiffusion to predict possible goals that satisfy physical
E1iog coffespotand copcat fo tha coffee tate SOREIUIS i the piate anc: bottia i the b Futssmonn the ikige constraints such as avoiding collisions between objects. At the core of StructDiffusion is an object-centric multimodal transformer backbone combined with
a diffusion model, capable of sampling diverse high-level motion goals for language-guided rearrangement.
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SIMULATION

Guided Conditional Diffusion for Controllable Traffic Simulation

Controllable Traffic Generation (CTG)

Offline Training Online Generation
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Controllable and realistic traffic simulation is critical for developing and verifying autonomous vehicles. Typical heuristic-based traffic models offer flexible control to make vehicles follow

B e e e e e e e e e e . -
G R e e e e S S S e e e —

NN

specific trajectories and traffic rules. On the other hand, data-driven approaches generate realistic and human-like behaviors, improving transfer from simulated to real-world traffic.
However, to the best of our knowledge, no traffic model offers both controllability and realism. In this work, we develop a conditional diffusion model for controllable traffic generation
(CTG) that allows users to control desired properties of trajectories at test time (e.g., reach a goal or follow a speed limit) while maintaining realism and physical feasibility through
enforced dynamics. The key technical idea is to leverage recent advances from diffusion modeling and differentiable logic to guide generated trajectories to meet rules defined using
signal temporal logic (STL). We further extend guidance to multi-agent settings and enable interaction-based rules like collision avoidance. CTG is extensively evaluated on the nuScenes
dataset for diverse and composite rules, demonstrating improvement over strong baselines in terms of the controllability-realism tradeoff.

<A NVIDIA.



arXiv:2211.14680v2 [cs.LG] 10 Feb 2023

PHYSICS

A Physics-informed Diffusion Model for

Bicubic Diffusion Reference

High-fidelity Flow Field Reconstruction

Dule Shu,™¥ Zijie Li,'$ and Amir Barati Farimani* !+

tDepartment of Mechanical Engineering, Carnegie Mellon Unwersity, Pittsburgh PA, USA
iMachine Learning Department, Carnegie Mellon University, Pittsburgh PA, USA
Y Department of Chemical Engineering, Carnegie Mellon Unwersity, Pittsburgh PA, USA

§ Contributed equally to this work

E-mail: barati@cmu.edu

Abstract

Machine learning models are gaining increasing popularity in the domain of fluid
dynamics for their potential to accelerate the production of high-fidelity computational
fluid dynamics data. However, many recently proposed machine learning models for
high-fidelity data reconstruction require low-fidelity data for model training. Such
requirement restrains the application performance of these models, since their data
reconstruction accuracy would drop significantly if the low-fidelity input data used in
model test has a large deviation from the training data. To overcome this restraint,
we propose a diffusion model which only uses high-fidelity data at training. With
different configurations, our model is able to reconstruct high-fidelity data from either
a regular low-fidelity sample or a sparsely measured sample, and is also able to gain

an accuracy increase by using physics-informed conditioning information from a known

partial differential equation when that is available. Experimental results demonstrate
that our model can produce accurate reconstruction results for 2d turbulent flows based Figure 3: Qualitative comparison of different upsampling methods on 4x upsampling task.

on different input sources without retraining.
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Reducible Loss

EMPIRICAL EVIDENCE

The Scaling Laws for Generative models

Generalization Error (Log-scale)

Images 8x8, loss per image
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Henighan, Tom, et al. Scaling laws for autoregressive generative modeling. arXiv preprint arXiv:2010.14701 (2020).
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Multimodal architectures



This is just the first wave
Rise of multimodal architectures

Audio

®

Heat map

NN

W/

IMU

O\ Meta Al
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Simplicity of multimodal architectures
LLAVA example

Language Model f¢,

Projecti | :
rojection W Z. H, ?Hq

s e b, Image Xq Language Instruction

Figure 1: LLaVA network architecture.
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This is just the first wave
Rise of multimodal architectures

Technology v Partners v Safety v Careers v Company v Blog v
Planning
Counterfactuals X Road-ruls
X /\
)
ety
Perception Attention

I'm slowing down

because there is a
@ van merging into my Llane

<« What’s your plan for
the next 3 seconds?
why?
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Large Language Models are
Large



LLAMA 2 TRAINING TIME
Hypothetical Training Time on single NVIDIA A100 GPUs

meta-llama

NVIDIA



LLAMA 2 TRAINING TIME
Training Time on NVIDIA A100 GPUs

DiRAC: Tursa

m) 157 days

meta-llama
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GOING BIGGER

The challenge

Consider 1 billion parameters model in FP16 and do the math:

* Data representation: Weights and Gradients in FP16

* Adam optimizer: Store 12 bytes per weight in FP16

1079 * (2B + 2B + 12B) = 14,90GB

1 billion parameters //
12 bytes per optimizer state

2 bytes per weight 2 bytes per gradient

<A NVIDIA.



DEALING WITH MEMORY CONSTRAINTS

Various Forms of Parallelism

Transformer Iayer #1

e b —— e

..........

Tensor MP pamtlon #2
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https://github.com/NVIDIA/Megatron-LM/
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Whole platform approach
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Today focusing on infrastructure



Lessons from the NVIDIA Al Journey

Industry-leading expertise gained from our most important endeavors

Green500 #3: "NVIDIA Green500 #23: "NVIDIA
DGX SuperPOD" DGX SuperPOD
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Going across the stack



Of course the GPU




Announcing NVIDIA Blackwell

The Engine of the New Industrial Revolution

Built to Democratize Trillion-Parameter Al

20 PetaFLOPS of Al performance on a single GPU

TRLALL .....llll

YYTITLLLLLLL

4X Training | 30X Inference | 25X Energy Efficiency & TCO

Expanding Al Datacenter Scale to beyond 100K GPUs

mE[EE E" >
n r] -
=" "
EREC "!
Al SUPERCHIP 2nd GEN TRANSFORMER ENGINE 5th GENERATION NVLINK RAS ENGINE SECURE Al
208B Transistors FP4/FP6 Tensor Core Scales to 576 GPUs 100% In-System

DECOMPRESSION ENGINE
Full Performance 800 GB/s
Self-Test Encryption & TEE

<A NVIDIA. I



New Class of Al Superchip
The Two Largest Dies Possible—Unified as One GPU

2 reticle-limited dies operate as One Unified CUDA GPU

Reticle-sized Die 1

NV-HBI 10TB/s High Bandwidth Interface

"
AR T LLLLLL

Full performance. No compromises

Fast Memory

192GB
HBM3e

Reticle-sized Die 2

10 PetaFLOPS FP8 | 20 PetaFLOPS FP4
192GB HBM3e | 8 TB/sec HBM Bandwidth | 1.8TB/s NVLink

<A NVIDIA. I



2"d Generation Transformer Engine
Accelerating Throughput with Intelligent 4-Bit Precision

Transformer Engine

- . Blackwell

| Adaptive | .
_— Range ! Micro-Tensor Enabling FP4 Al Inference
r=T - - Scaling #
— | "1 1 01 2x Compute
Iﬁ : Statistics é‘ .
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2x Model Size
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Adapting to even larger neural networks



NVIDIA

NVIDIA Grace CPU

High Performance Power Efficient Cores
72 flagship Arm Neoverse V2 Cores with
SVE?2 4x128b SIMD per core

Fast On-Chip Fabric

3.2 TB/s of bisection bandwidth connects
CPU cores, NVLink-C2C, memory, and system 10

High-Bandwidth Low-Power Memory
Up to 480 GB of data center enhanced LPDDR5X Memory that
delivers up to 500 GB/s of memory bandwidth

Coherent Chip-to-Chip Connections

NVLink-C2C with 900 GB/s bandwidth for coherent
connection to CPU or GPU

Industry Leading Performance Per Watt
Up to 2X perf / W over today’s leading servers
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NVIDIA Grace CPU




NVLINK-C2C
High Speed Chip to Chip Interconnect

CPU LPDDR5X

- Creates Grace Hopper and Grace Superchips

Removes the typical cross-socket bottlenecks

Up to 900GB/s of raw bidirectional BW

- Same BW as GPU to GPU NVLINK on Hopper

Low power interface - 1.3 pJ/bit

NVLINK C2C
900 GB/s

- More than 5x more power efficient than PCle

Enables coherency for both Grace and Grace

Hopper superchips

CPU LPDDR5X

@ANVIDIA. I



NVIDIA Grace for Cloud, Al and HPC Infrastructure

Grace CPU Superchip
CPU Computing

Pt

CPU-based applications where absolute performance,

energy efficiency, and data center density matter, such

as scientific computing, data analytics, enterprise and
hyperscale computing applications

GH200 Grace Hopper Superchip
Large Scale Al & HPC

Accelerated applications where CPU performance and
system memory size and bandwidth are critical; tightly
coupled CPU & GPU for flagship Al & HPC. Most

versatile compute platform for scale out.

@ANVIDIA. I



Grace Hopper Performance sneak peek

Improved GPU utilization for Al applications

Al Inference Applications Al Fine Tuning Applications DataBase Applications
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Beyond a single GPU



NVIDIA DGX H100: The Proven
Choice for Enterprise Al

8x NVIDIA H100 GPUs With 640 Gigabytes of Total GPU
Memory

18x NVIDIA NVLink connections per GPU, 900 gigabytes per
second of bidirectional GPU-to-GPU bandwidth

24 TB/s memory bandwidth

4x NVIDIA NVSwitches

7.2 terabytes per second of bidirectional GPU-to-GPU bandwidth,
1.5X more than previous generation

10x NVIDIA ConnectX-7 400 Gigabits-Per-Second Network
Interface

1 terabyte per second of peak bidirectional network bandwidth

Dual 56-core 4th Gen Intel® Xeon® Scalable Processors
and 2 TB System Memory

Powerful CPUs and massive system memory for the most
intensive Al jobs

30 Terabytes NVMe SSD
High speed storage for maximum performance

32 petaFLOPS Al performance

NVIDIA




DGX B200

Next generation DGX system with 8X NVIDIA
Blackwell GPUs

1.4TB of GPU memory, enabling training of large
generative Al models

Purpose-built, unified platform for every workload from
training, to fine-tuning, to inference

Delivers 3X Al training and 15X Al inference performance
as previous generation (DGX H100)

Latest Blackwell architecture in a scalable, air-cooled
design

DGX B200

NVIDIA



Announcing Fifth Generation NVLIink and NVLink Switch Chip

Efficient Scaling for Trillion Parameter Models

7.2 TB/s Full all-to-all Bidirectional Bandwidth
Sharp v4 plus FP8
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3.6 TF In-Network Compute
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Expanding NVLink up to 576 GPU NVLink Domain

18X Faster than Today’'s Multi-Node Interconnect

<A NVIDIA. I



SERVER DESIGN

Facilitating for Various Forms of Parallelism
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LLAMA 2 TRAINING TIME
Hypothetical Training Time on single NVIDIA A100 GPUs

meta-llama

NVIDIA



Beyond a single server



Powering Your Al Journey End-to-End

Delivering incremental value for your DGX data center, as your needs grow

Day One Scaled Infrastructure Al CoE
DGX SuperPOD

your 1° DGX systems DGX BasePOD

DGX Systems
powers every step
in your Al journey

A W '\_

. NVIDIA Al Enterprise:
Pre-trained models, optimized frameworks

» Accelerate data prep tasks
«  Customize/fine-tune pre-trained models

Base Command

Ca pabi|itieS that -  Optimize/accelerate inference
. Kubernetes or Slurm scheduling
help you grow . Add/manage DGX within your existing compute infrastructure (cloud, non-GPU)
Run Jupyter notebooks
Cloud-based private registry

Accelerate storage & network |0

Fully optimized OS stack
DGX-Ready Software for Al workflow management and MLOps (Optional)

your Al platform

Continuous roadmap of innovative features delivered to customers

- DGX Cloud - The Cloud-First Way to Get Access to Your Own DGX Al Supercomputer

<A NVIDIA. I



DGX SUPERPOD

Modular Architecture

* 140 DGX A100 nodes (1,120 GPUs) in a GPU POD
« 1st tier fast storage - DDN Al400x with Lustre

* Mellanox HDR 200Gb/s InfiniBand - Full Fat-tree
*  Network optimized for Al and HPC

DGX A100 Nodes
« 2x AMD 7742 EPYC CPUs + 8x A100 GPUs
* NVLINK 3.0 Fully Connected Switch
« 8 Compute + 2 Storage HDR IB Ports

A Fast Interconnect
*  Modular IB Fat-tree
» Separate network for Compute vs Storage

- Adaptive routing and SharpV2 support for offload

DGX A100
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DGX SUPERPOD

Extensible Architecture

POD to POD
Modular IB Fat-tree or DragonFly+
- Core IB Switches Distributed Between PODs
- Direct connect POD to POD

Distributed Core Switches Distributed Core Switches

Storage Spine Switches
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The New GPU




Announcing GB200 NVL72

36 GRACE CPUs
GB200 NVL72 { 72 BLACKWELL GPUs
Fully Connected NVLink

Switch Rack
Training FP8 /20 PFLOPs
Inference FP4 1,440 PFLOPs
NVL Model Size 27T params
Multi-Node All-to-All 130 TB/s

Multi-Node All-Reduce 260 TB/s

NVIDIA



GB200 NVL72 Compute and Interconnect Nodes

GB200 SUPERCHIP

40 PETAFLOPS FP4 Al INFERENCE
20 PETAFLOPS FP8 Al TRAINING
864GB FAST MEMORY

Building Blocks for the GB200 NVL72 Rack

GB200 SUPERCHIP COMPUTE TRAY

2x GB200

80 PETAFLOPS FP4 Al INFERENCE
40 PETAFLOPS FP8 Al TRAINING
1728 GB FAST MEMORY

1U Liquid Cooled

18 Per Rack

NVLINK SWITCH TRAY

2x NVLINK SWITCH CHIP
14.4 TB/s Total Bandwidth
SHARPv4 FP64/32/16/8
1U Liquid Cooled

9 Per Rack

@ANVIDIA. I



GB200 NVL72 Enabling Trillion Parameter Al

30x Realtime Inference Mixture of Experts Inference, 25X Improved Energy Efficiency

]0).¢ 25X

Higher Energy
Throughput Efficiency

30X

GPT
Mixture of Experts
1.8T Params

6X
GPT-3
175B
] X . Params
_ I

Projected performance subject to change <ANVIDIA
Token-to-token latency (TTL) = 50 milliseconds (ms) real time I



Blackwell for Every Generative Al Use Case

GB200 NVL72 HGX B200 HGX B100

Compute for Trillion Parameter Scale Al Best Performance and TCO for HGX Platform Drop-in Upgrade for Existing Hopper Infrastructure
Maximum Performance and Lowest TCO

NVIDIA



Blackwell Ecosystem
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GB200 NVL72
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| do not care about training!
What about inference?



NVIDIA MGX
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Scientific Data LLM Gen Al Cloud
Computing Processing Training Inference Video & Graphics

Enterprise

Gen Al Edge Al

$1T Global Datacenter Infrastructure transitioning to accelerated computing and generative Al

Accelerated Computing

GPU CPU DPU

A Modular Reference Architecure for Accelerated Computing

Time-to-Market Multi-Gen Compatibility Open and Flexible

<A NVIDIA. I
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New!
NVLink Dual GH200 system

.
—

144 Core Grace CPU | 8 PFLOPS Hopper GPU
288 GBHBM3e | 10TB/s

2U X86 Mainstream Server

2U | x86 | 4 L40 | BF-3 | 2CX-7 | 6 PCIE

Grace-Hopper Aerial Server

1U | Grace-Hopper | 2 BF-3 | 4 PCIE

Grace Cloud Gaming Server

2U Grace Mainstream Server

2U | Grace | 4 L40 | BF-3 | 2CX-7 | 6 PCIE
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Dense General-Purpose Grace CPU Server

1U | 2 Grace | 2BF-3| 4 PCIE

Hopper NVL Inference Server

2U | Grace | 10L4 | BF-3 | 11 PCIE 4U | x86 | 8 HIOONVL | 2 BF-3 | 10 PCIE

Grace Hopper Server

2U | Grace-Hopper | BF-3 | CX-7 | 6 PCIE

Grace-Hopper Liquid-Cooled Server for HPC

1U | 2 Grace-Hopper | 2 BF-3 | 4 PCIE

Grace-Hopper Aerial Server Short Depth

2U 450mm | Grace-Hopper | BF-3 | CX-7



ABOUT ME

Adam Grzywaczewski - adamg@nvidia.com
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